Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

© Author(s) 2019. CC BY 4.0 License.

Effects of stabilized Criegee Intermediates (sCI) on the sulfate formation: A sensitivity 1 analysis during summertime in Beijing-Tianjin-Hebei (BTH), China

 $\begin{smallmatrix}2&3&4&5\\5&6&7&8&9\end{smallmatrix}$ $Lang\ Liu^{1,3,4},\ Naifang\ Bei^2,\ Jiarui\ Wu^{1,3},\ Suixin\ Liu^{1,3},\ Jiamao\ Zhou^{1,3},\ Xia\ Li^{1,3},\ Qingchuan\ Yang^1,\ Tian\ Feng^1,$ Junji Cao^{1,3}, Xuexi Tie¹, Guohui Li^{1,3*}

¹Key Lab of Aerosol Chemistry and Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China

²School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, 10

³CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China

⁴University of Chinese Academy of Sciences, Beijing, 100049, China

Correspondence to: Guohui Li (ligh@ieecas.cn)

15 16

17

18

19

20

21

22

23

24

25

26

27

28

29 30

31

32

33 34 Abstract: Sulfate aerosols exert profound impacts on climate, ecosystem, visibility, and public health, but the sulfate formation pathway remains elusive. In the present study, a source-oriented WRF-Chem model is applied to simulate a persistent air pollution episode from 04 to 15 July 2015 in Beijing-Tianjin-Hebei (BTH), China to study contributions of four pathways to the sulfate formation. When comparing simulations to measurements in BTH, the index of agreement (IOA) of meteorological parameters, air pollutants and aerosol species generally exceeds 0.6. On average in BTH, the heterogeneous reaction of SO₂ involving aerosol water and the SO₂ oxidation by OH constitutes the two most important sulfate sources, with a contribution of about 35~38% and 33~36% respectively. The primary emission accounts for around 22~24% of sulfate concentrations due to high SO₂ emissions. The SO₂ oxidation by stabilized Criegee Intermediates (sCI) also plays an appreciable role in the sulfate formation, with a contribution of around 9% when an upper limit of the reaction rate constant of sCI with SO₂ (κ_{sCI+SO_2} =3.9×10⁻¹¹ cm³ s⁻¹) and a lower limit of the reaction rate constant of sCI with H₂O (κ_{sCI+H_2O} =1.97×10⁻¹⁸ cm³ s⁻¹) are used. Sensitivity studies reveal that there still exist large uncertainties in the sulfate contribution of the SO₂ oxidation by sCI. The sulfate contribution of the reaction is decreased to less than 3% when κ_{SCI+SO_2} is decreased to 6.0×10^{-13} cm³ s⁻¹. Furthermore, when κ_{sCI+H_2O} is increased to 2.38×10^{-15} cm³ s⁻¹ based on the reported ratio of κ_{SCI+H_2O} to κ_{SCI+SO_2} (6.1×10⁻⁵), the sulfate contribution becomes insignificant, less than 2%. Further studies need to be conducted to better determine κ_{sCI+SO_2} and κ_{sCI+H_2O} to evaluate effects of the sCI chemistry on the sulfate formation.

36 37

35

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

39

© Author(s) 2019. CC BY 4.0 License.

1 Introduction

40 As a major component of fine particulate matters (PM_{2.5}) in the atmosphere, sulfate 41 aerosols not only directly and indirectly influence regional and global climate, also impair 42 ecosystem, visibility and potentially public health (e.g., Wang and Hao, 2012; Guo et al., 43 2014; Gao et al., 2016; Tao et al., 2017). Sulfate aerosols are primarily formed through 44 homogeneous and heterogeneous oxidations of sulfur dioxide (SO₂) emitted from anthropogenic and natural sources (Seinfeld and Pandis, 2006). The sulfate formation 45 pathway via the SO₂ oxidation includes aqueous reactions in cloud or fog droplets, 46 47 heterogeneous reactions associated with aerosol water, and gas-phase reactions with hydroxyl 48 radicals (OH) and stabilized Criegee Intermediates (sCI) (Seinfeld and Pandis, 2006; Wang et 49 al., 2016; Li et al., 2017). Recent studies have revealed that the SO₂ oxidation by sCI could 50 constitute an important sulfate source in the atmosphere (Welz et al., 2012; Mauldin et al., 51 2012; Boy et al., 2013; Pierce et al., 2013; Percival et al., 2013). 52 Carbonyl oxide intermediates formed in the ozonolysis reaction of alkenes, often known 53 as sCI, are proposed to be important radicals in the atmosphere. In the gas phase, sCI can act 54 as an additional atmospheric oxidant. Laboratory studies in the 1970s have shown that the 55 SO₂ oxidation is enhanced in the presence of alkenes and ozone, providing the first evidence 56 that sCI could react with SO₂ (Cox and Penkett, 1971). In the 2010s, Welz et al. (2012) have 57 used photoionization mass spectrometry to make the first direct measurement of individual sCI isomers. They have found that the reaction rate of the simplest sCI, H₂COO, with SO₂ is 58 59 faster than expected by up to three orders of magnitude, whereas the removal of sCI by water 60 vapor is comparatively slow. The result has also indicated that the sCI chemistry potentially 61 contributes substantially to the SO₂ oxidation, and exerts profound effects on the sulfate 62 formation. Basing on the laboratory experiments and theoretical considerations, Mauldin et al. 63 (2012) have reported the reaction rate of the sCI originated from the ozonolysis reaction of

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

© Author(s) 2019. CC BY 4.0 License.

α-pinene and limonene with SO₂ under boundary layer atmospheric conditions. The new 64 reaction rates are slower than those found in Welz et al. (2012), but still about one order of 65 66 magnitude faster than previously used (Jenkin et al., 1997). 67 Further studies have been conducted to evaluate contributions of the SO₂ oxidation by 68 sCI to the sulfate in the atmosphere, based on the results of Welz et al. (2012) and Mauldin et 69 al. (2012). Boy et al. (2013) have examined effects of the increased reaction rate of sCI with 70 SO₂ on the atmospheric sulfuric acid (H₂SO₄) concentration at two stations, showing that the 71 reaction contributes as much as 33-46% of H₂SO₄ concentrations at the ground level. Using 72 the results of Welz et al. (2012), Sarwar et al. (2013) have shown that the SO₂ oxidation by 73 sCI does not substantially influence sulfate concentrations in the USA due to the competing 74 reaction of sCI with water vapor. However, when using the high reaction rate constant of sCI 75 with SO₂ (κ_{sCI+SO_2}) and the low reaction rate constant of sCI with H₂O (κ_{sCI+H_2O}) 76 simultaneously, the SO₂ oxidation by sCI considerably enhances the sulfate formation 77 (Sarwar et al., 2014). Li et al. (2013) have demonstrated that the SO₂ oxidation by sCI 78 contributes about 18% of the sulfate concentration during summertime in the eastern USA, 79 when using the κ_{sCI+SO_2} reported by Welz et al. (2012). Pierce et al. (2013) have used the 80 same κ_{sCI+SO_2} in simulations of the GEOS-CHEM model, showing that the reaction increases the H₂SO₄ production globally by 4%, and the induced H₂SO₄ enhancement is 81 82 almost entirely distributed over the forested continental regions with large fluxes of biogenic 83 alkene emissions. 84 With rapid industrialization and urbanization, heavy air pollution with high levels of 85 PM_{2.5} and/or ozone (O₃) frequently occurs in Beijing-Tianjin-Hebei (BTH), and sulfate 86 aerosols have become a main component of PM_{2.5} (e.g., Zhang et al., 2012; Zhao et al., 2013; 87 Sun et al., 2015; Li et al., 2017; Wu et al., 2017). Considering the high alkenes emissions and 88 increasing trend of O₃ concentrations during summertime in BTH, it is imperative to assess

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

© Author(s) 2019. CC BY 4.0 License.

effects of the sCI chemistry on the sulfate formation. In the present study, a source-oriented WRF-Chem model has been developed and applied to study the contribution of different pathways to the sulfate formation in BTH during the summer of 2015. The model configuration and methodology are described in Section 2. Results and discussions are presented in Section 3. The conclusions and summaries are drawn in Section 4.

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

89

90

91

92

93

2 Model and methodology

2.1 WRF-CHEM model and configuration

A specific version of the WRF-Chem model (Grell et al., 2005) developed by Li et al. (2010; 2011a; 2011b; 2012) at the Molina Center for Energy and the Environment is used in the present study. Detailed model description can be found in previous studies (Li et al., 2018; Wu et al., 2017; Feng et al., 2016; Xing et al., 2019). Briefly, the model includes a new flexible gas-phase chemical module and the Community Multi-scale Air Quality (CMAQ) aerosol module developed by the US EPA (Binkowski and Roselle, 2003). The wet deposition uses the method in the CMAQ module and the dry deposition of chemical species is parameterized following Wesely (1989). The photolysis rates are calculated using the Fast Tropospheric Ultraviolet and Visible Radiation Model (FTUV; Li et al., 2005; Tie et al., 2003), with the aerosol and cloud effects on the photochemistry (Li et al., 2011a). The ISORROPIA Version 1.7 is applied to calculate the inorganic components (Nenes et al., 1998). The secondary organic aerosol (SOA) is simulated using a non-traditional module, including the volatility basis-set (VBS) modeling approach and SOA contributions from glyoxal and methylglyoxal. Traditionally, the brute force method (BFM) is generally used to quantify the formation pathway of particulate matters and chemical compounds in modeling studies (Dunker et al., 1996). The BFM method evaluates the importance of the certain formation pathway through

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

© Author(s) 2019. CC BY 4.0 License.

including and excluding the pathway in simulations, but it lacks consideration of interactions of the complicated physical and chemical processes in the atmosphere (Zhang and Ying, 2011). The source-oriented method introduces additional chemical species to represent formations from different pathways, providing direct and quantitative determination of contributions of different pathways (Ying and Krishnan, 2010). The coupled source-oriented method air quality models have been widely used to study source apportionment of particulate matters and chemical compounds. Detailed description about the method can be found in previous studies (Ying and Kleeman, 2006; Ying and Krishnan, 2010; Zhang and Ying, 2011). In the present study, four reactive tagged species are introduced to track the sulfate formation pathways.

A persistent air pollution episode with high levels of O₃ and PM_{2.5} from 04 to 15 July 2015 in BTH is simulated in association with the observation of air pollutants and secondary aerosols. Detailed information about the episode can be found in Wu et al. (2017). Figure 1 shows the WRF-Chem model simulation domain and Table 1 presents the model configuration.

2.2 Simulations for the sulfate aerosols

Four sulfate formation pathways are considered in the WRF-Chem model, including (1) the heterogeneous reaction of SO₂ involving aerosol water (hereafter referred to as HR_SO₂), (2) the SO₂ oxidation by OH (hereafter referred to as OH_SO₂), (3) the primary emission, and (4) the SO₂ oxidation by sCI (hereafter referred to as sCI_SO₂). The sulfate formed in the four pathways is tagged and traced in the model to study their contributions to the sulfate formation. It is worth noting that the WRF-Chem model cannot well resolve clouds formed in the planetary boundary layer (PBL), so the aqueous SO₂ oxidation in cloud or fog droplets is not considered in the study, which might cause the sulfate underestimation. The HR_SO₂ is parameterized as a first-order irreversible uptake of SO₂ by aerosol water, with a reactive

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

© Author(s) 2019. CC BY 4.0 License.

139 uptake coefficient of 0.5×10⁻⁴, assuming that alkalinity is sufficient to maintain the high 140 iron-catalyzed reaction rate in BTH (Li et al., 2017). Effects of the sCI chemistry on the sulfate formation depend on κ_{sCI+SO_2} and κ_{sCI+H_2O} , 141 142 as well as the sCI precursor concentration. In the study, sCI are assumed to yield from the 143 ozonolysis reaction of five alkenes based on the SAPRC99 mechanism, including ethene 144 (ETHE), terminal olefin (OLE1), internal olefin (OLE2), isoprene (ISOP), and monoterpenes 145 (TERP). Detailed information about the sCI chemistry associated with the sulfate formation 146 can be found in Table 2. 147 CH₂OO (sCI₁) is used to represent sCI produced from the ozonolysis reaction of ETHE and OLE1 and the sCI yield of the two reactions are described in Sarwar et al. (2013). 148 149 CH₃CHOO (sCI₂) is formed from the ozonolysis reaction of OLE2, and proposed to have two 150 isomers: syn-CH₃CHOO and ant-CH₃CHOO (Anglada et al., 2011). The reported reaction rate constants of syn-CH₃CHOO and ant-CH₃CHOO with H₂O are 3.23×10⁻¹⁸ and 3.23×10⁻¹³ 151 152 cm³ s⁻¹, respectively. We use syn-CH₃CHOO (sCI₂) to represent the sCI from the ozonolysis reaction of OLE2 to minimize the removal of sCI by water vapor and maximize sulfate 153 154 production following Ying et al. (2014). sCI₃ is used to represent sCI from the ozonolysis 155 reaction of isoprene and monoterpenes, and the detailed chemistry of sCI₃ is descripted in 156 Sarwar et al. (2013, 2014). 157 In the base case (hereafter referred to as B-case) simulation used to compare with 158 observations in BTH, we use a single κ_{sCI+SO_2} reported by Welz et al. (2012) for reactions 159 of SO₂ with sCI_{1,2,3}. For removal of sCI_{1,2,3} by water vapor, we employ the κ_{sCI+H_2O} 160 suggested by Ying et al. (2014). While not important, the reaction of sCI_{1,2,3} with NO₂ is also

implemented in the model, and the rate constant is taken from Welz et al. (2012).

2.3 Observations

161

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

© Author(s) 2019. CC BY 4.0 License.

163 Simulations are compared to available meteorological and air pollutants observations to 164 validate the model performance. The meteorological parameters including surface 165 temperature (TSFC), relative humidity (RH), wind speed and direction with a 3-hour interval 166 are obtained from the website http://www.meteomanz.com. The hourly measurements of 167 PM_{2.5}, O₃, SO₂, and NO₂ used in this study are downloaded from the website 168 http://www.aqistudy.cn. The submicron sulfate, nitrate, ammonium, and organic particulate 169 matters are observed by the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) at the 170 National Center for Nanoscience and Technology (NCNST), Chinese Academy of Sciences, Beijing (116.39°E, 39.99°N). Detailed description about the methods to obtain the primary 171 172 organic aerosol (POA) and secondary organic aerosol (SOA) mass concentration from the 173 results of ACSM are given in Wu et al. (2017). Figure 1 shows the locations of the ambient 174 air quality monitoring sites and the NCNST observation site.

2.4 Statistical methods for model evaluation

In this study, the mean bias (MB), root mean square error (RMSE) and the index of agreement (IOA) are used to evaluate the model performance:

178
$$MB = \frac{1}{N} \sum_{i=1}^{N} (P_i - O_i)$$
 (1)

179
$$RMSE = \left[\frac{1}{N}\sum_{i=1}^{N}(P_i - O_i)^2\right]^{\frac{1}{2}}$$
 (2)

$$IOA = 1 - \frac{\sum_{i=1}^{N} (P_i - O_i)^2}{\sum_{i=1}^{N} (|P_i - \bar{O}| + |O_i - \bar{O}|)^2}$$
(3)

Where P_i and O_i are the simulated and observed variables, respectively. N is the total

number of the simulations for comparisons, and \bar{O} donates the average of the observation.

The IOA ranges from 0 to 1, with 1 showing a perfect agreement of the simulation with the

184 observation.

185

186

175

3 Results and discussions

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

© Author(s) 2019. CC BY 4.0 License.

3.1 Model evaluation

3.1.1 Meteorological parameters simulations in Beijing

Considering the key role of meteorological conditions in air pollution simulations (Bei et al., 2012, 2017), Figure 2 shows the temporal profiles of observed and simulated TSFC, RH, wind speed and wind direction from 04 to 15 July 2015 at the weather station in Beijing (Figure 1). The WRF-Chem model generally well replicates the temporal variation of the TSFC during the whole episode compared to observations, with the MB and IOA of 0.7°C and 0.95, respectively. The model considerably overestimates TSFC on July 4 and in the evening of July 13 and 14. The model also performs reasonably well in simulating the RH against observations, with the MB and IOA of -5.3% and 0.84, respectively. The observed high RH exceeding 75% during nighttime is generally well captured, except on July 4 and 14 when the TSFC is overestimated. In addition, the model also reasonably well tracks the temporal variations of the wind speed and direction compared to observations, with an IOA of around 0.60. In general, the reasonable simulations of meteorological fields provide a reliable basis for modeling the O₃ and PM_{2.5} pollution episode in the present study.

3.1.2 Air pollutant simulations in BTH

Figure 3 shows the diurnal profiles of measured and simulated PM_{2.5}, O₃, NO₂, SO₂, and CO mass concentrations averaged over all ambient monitoring stations in BTH during the episode. Apparently, the WRF-Chem model exhibits good performance in simulating the temporal variations of PM_{2.5} and O₃ mass concentrations against observations in BTH, with the IOAs of around 0.90. However, the model fails to capture the observed high PM_{2.5} concentration on July 11 and 12, and frequently overestimates O₃ concentration in the evening, with a MB of 1.2 μg m⁻³. The simulated temporal variation of NO₂ mass concentrations is also generally consistent with observations in BTH, but the model frequently overestimates NO₂ concentrations against observations during nighttime, which

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

© Author(s) 2019. CC BY 4.0 License.

might be caused by the low simulated planetary boundary layer (PBL) height or the O₃ overestimation. Simulations of the SO₂ mass concentration are not as good as those of other pollutants in BTH during the episode, with an IOA of 0.45. During summertime, SO2 is principally emitted by the point source, including the power plants and agglomerated industrial zones, so the uncertainties of simulated wind fields substantially affect the SO₂ simulations. Additionally, the model overestimation of SO₂ concentrations is also considerable during nighttime, which is perhaps due to the simulated low PBL height. It is worth noting that NH₃ plays an important role in the sulfate formation (Wang et al., 2016; Cheng et al., 2016), so it is imperative to validate NH₃ simulations using measurements. However, due to lack of routine measurements of NH₃ in BTH, the validation of the NH₃ simulation is not provided in the study. Figure 4 presents the distributions of simulated and observed near-surface mass concentrations of PM_{2.5}, O₃, NO₂ and SO₂ along with the simulated wind fields averaged from 04 to 15 July 2015. Generally, the simulated wind in BTH is weak during the episode and the easterly wind prevails, which is favorable for the accumulation of air pollutants, particularly along the Taihang and Yanshan Mountains due to the blocking effect. The model generally well reproduces the spatial distribution of PM_{2.5} concentrations against observations, with the PM_{2.5} concentration exceeding 35 μg m⁻³ in the plain area of BTH (Figure 4a). The average simulated peak O₃ concentrations are more than 200 μg m⁻³ during the episode in the plain area of BTH, consistent with the measurement and showing the severe O₃ pollution (Figure 4b). High levels of O₃ indicate a strong atmospheric oxidation capacity (AOC), facilitating the photochemical reactions over BTH (Figure 4b). The simulated high NO₂ and SO₂ concentrations are generally concentrated in cities and their surrounding areas, in agreement with the measurement (Figures 4c and 4d). However, the model considerably overestimates the NO₂ concentrations against the measurement in Beijing,

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

239

240

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

© Author(s) 2019. CC BY 4.0 License.

237 Shijiazhuang and Handan city. In addition, the SO₂ concentrations in BTH are much lower

than those during wintertime (Li et al., 2018; Xing et al., 2019), generally less than 30 μg m⁻³.

Reduced SO₂ concentrations in BTH during summertime are caused by the efficient removal

of gas-phase oxidations due to the high AOC, the reduction of residential coal combustion,

and the increased PBL height.

242 3.1.3 Aerosol species simulations in Beijing

Figure 5 presents the temporal variations of simulated and observed submicron nitrate, ammonium, SOA and POA mass concentrations at NCNST site in Beijing from 04 to 15 July 2015. The WRF-Chem model reasonably reproduces the diurnal variation of the nitrate concentration compared to observations, with the MB and IOA of -0.7 µg m⁻³ and 0.81, respectively (Figure 5a). Nitrate formation is sensitive to the air temperature, and its variation is generally negatively correlated with that of the temperature. When the temperature is lowest in the early morning, the nitrate concentration reaches its peaks; when the temperature is up to 30°C in the afternoon, the nitrate concentration is generally less than 1 µg m⁻³. The simulated ammonium profile is generally in agreement with observations, with an IOA of 0.71, but the model biases are still large. The model underestimation of the ammonium concentration is considerable on July 11 and 12, and the overestimation is also noticeable on July 6 and 7. The model reasonably reproduces the temporal variation of the SOA and POA concentrations compared to the measurement at the NCNST site, with the IOA of around 0.60. The observed SOA concentration exhibits rather large fluctuations from 11 to 15 July 2015, which are not well tracked by the model. The model fails to capture the observed large fluctuations of POA concentrations. The POA concentration in Beijing is primarily contributed by direct emissions from vehicles, cooking, coal combustion, biomass burning, and trans-boundary transport from outside of Beijing (Wu et al., 2017; Wu et al., 2018), and

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

© Author(s) 2019. CC BY 4.0 License.

the uncertainties in various anthropogenic sources and simulated meteorological fields substantially affect the POA simulations (Bei at al., 2017; Bei et al., 2016).

In summary, the WRF-CHEM model performs reasonably well in simulating meteorological fields, air pollutants and aerosol species, providing the underlying basis for further evaluation of the sulfate formation pathway.

3.2 Contributions of four pathways to sulfate formation in Beijing and BTH

Figure 6a provides the diurnal profile of simulated and observed submicron sulfate concentrations at NCNST site in Beijing from 04 to 15 July 2015. The model reasonably well tracks temporal variations of the observed sulfate concentration, with the MB and IOA of -0.9 μg m⁻³ and 0.71, respectively. During 11 to 12 July 2015, the model noticeably underestimates the high sulfate concentrations against the measurement. As mentioned in Section 2, the aqueous oxidation of SO₂ in cloud or fog droplets is not considered in the simulation, which might constitute one of the most possible reasons for the underestimation.

Figures 6b-e present the contributions of the four pathways to the sulfate formation during the episode at NCNST site in Beijing. On average, the HR_SO₂ plays the most important role in the sulfate formation, with a contribution of about 32.1% (Figure 6b). Li et al. (2017) have also shown that the HR_SO₂ is the dominant sulfate source, contributing around 58.4% to sulfate concentrations in Beijing during wintertime due to the very humid conditions and inefficient sulfate formation from gas-phase SO₂ oxidation due to the low AOC. In this study, the average simulated RH is not high in Beijing, less than 50% during the episode, and high O₃ concentrations enhance the AOC to facilitate the gas-phase SO₂ oxidation, causing the decreased sulfate contribution of the HR_SO₂. It is worth nothing that the HR_SO₂ relies on the assumption that alkalinity is sufficient to maintain the high iron-catalyzed reaction rate (Li et al., 2017). Figure 7 presents the temporal variation of the average simulated aqueous pH in Beijing during the episode. The simulated pH generally

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

© Author(s) 2019. CC BY 4.0 License.

fluctuates between 5 and 7, with an average of 6.2, warranting the efficient iron-catalyzed reaction involving aerosol water. High O₃ concentrations substantially increase the sulfate formation efficiency through the SO₂ oxidation by OH and sCI. The OH SO₂ plays considerable roles in the sulfate formation, with the contribution of 30.8% (Figure 6c). It is worth noting that the primary emission pathway contributes 24.0% of the sulfate concentration at NCNST site. The sCI SO₂ accounts for about 13.1% of sulfate concentrations at NCNST site, less than the contribution of the other three pathways. Effects of the sCI SO₂ on the sulfate formation depend on the κ_{sCI+SO_2} . The reported κ_{sCI+SO_2} from previous studies spans orders of magnitude (Welz et al., 2012; Maudlin et al., 2012; Jenkin et al., 1997). In the present study, an upper limit of the κ_{sCI+SO_2} (3.9×10⁻¹¹ cm³ s⁻¹) is used in the B-case, which is reported by Welz et al. (2012). Furthermore, the reaction of sCI with H₂O is the main loss pathway for sCI in the atmosphere, and the κ_{sCI+H_2O} used in this study represents a lower limit (1.97×10⁻¹⁸ cm³ s⁻¹) (Ying et al., 2014). Therefore, the contribution of the sCI SO₂ to the sulfate formation might be overestimated in the present study. Figure 8 presents the spatial distribution of contributions of the four pathways to the sulfate formation averaged during the episode. The contribution of the HR SO₂ to the sulfate formation is substantial in BTH, particularly in the plain area with the sulfate contribution exceeding 4.0 µg m⁻³ and being up to 7.0 µg m⁻³ (Figure 8a). Under the condition of high O₃ concentrations, the OH SO₂ oxidation also becomes an important sulfate source, with a sulfate contribution of more than 3.0 µg m⁻³ in the plain area of BTH, which is comparable to the heterogeneous pathway (Figure 8b). Similar to the spatial distribution of SO₂ concentrations, the sulfate contribution of the primary emission is mainly concentrated in cities and their downwind areas (Figure 4c). In the plain area of BTH, the sulfate contribution of the primary emission is more than 2.0 μg m⁻³ on average, and exceeds 7 μg m⁻³ in

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

© Author(s) 2019. CC BY 4.0 License.

highly-industrialized cities, such as Shijiazhuang, Tangshan and Xingtai. The sulfate contribution of the sCI_SO₂ is not as important as the other three sources, more than $0.8~\mu g$ m⁻³ in the plain area of BTH, and the most striking in Beijing, with a contribution exceeding $1.2~\mu g$ m⁻³.

3.3 Sensitivity studies

Considering the large variation of the reported κ_{sCI+SO_2} and the importance of water vapor in the sCI removal, sensitivity studies are further conducted to evaluate the sulfate contribution of the sCI_SO₂ in BTH when the different κ_{sCI+SO_2} and κ_{sCI+H_2O} are used in simulations. In the B-case simulation, an upper limit of the κ_{sCI+SO_2} and a lower limit of κ_{sCI+H_2O} are used. The simulated average sulfate concentration is 10.8 µg m⁻³ in BTH, constituting a major component of PM2.5. The HR_SO2 and OH_SO2 constitute the two most important sulfate sources, with the sulfate contribution of 35% and 33%, respectively. The primary emission makes up about 23% of the sulfate in BTH, caused by high SO₂ emissions. The sulfate contribution of the sCI SO₂ is about 1.0 µg m⁻³ or 9.1%, less than that in Beijing with the higher O_3 concentration. Pierce et al. (2013) have used the same κ_{sCI+SO_2} in GEOS-CHEM model as the B-case in the study, revealing that the H₂SO₄ concentration is increased by 4% due to the sCI SO₂ on global average. The H₂SO₄ enhancement is 10-25% over forested regions in the Northern Hemisphere (up to 100% in July), but is generally negligible elsewhere. The sulfate contribution of the sCI SO₂ in BTH is close to those over forested regions in Pierce et al. (2013), which is primarily caused by the increasing trend of O₃ and the high precursors emissions of sCI, such as ethene, isoprene and monoterpenes during summertime in the region. Additionally, Boy et al. (2013) have employed the κ_{sCI+SO_2} reported by Mauldin et al. (2012) and Welz et al. (2012) to verify the sulfate contribution of the sCI SO₂ in European, showing a H₂SO₄ contribution of as much as 33-46% at the ground level. These different sulfate contributions of the sCI SO₂ are mainly caused by

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

© Author(s) 2019. CC BY 4.0 License.

336 the variation of the reaction constant of sCI with SO2, NO2, and H2O and the sCI precursors 337 concentration, as well as the atmospheric conditions in simulations (Taaties, 2017). 338 Although the sCI SO₂ is not an important sulfate source, its contribution might be 339 overestimated. The κ_{sCI+SO_2} used in the B-case is only measured for the smallest sCI, H₂COO, but the larger sCI (such as those produced from typical larger alkenes in the 340 341 atmosphere) might have a lower reaction rate with SO₂, and produce stable low volatilities 342 species such as sulfur-bearing secondary ozonides (Spracklen et al., 2011; Vereecken et al., 343 2012). Additionally, Welz et al. (2012) have measured κ_{sCI+SO_2} at low pressure (4 Torr), 344 making it unclear if those rates are appropriate for atmospheric conditions. In the S1-case, the reported κ_{sCI+SO_2} (6.0×10⁻¹³ cm³ s⁻¹) by Mauldin et al. (2012) is 345 346 used, which is deduced from ozonolysis of α-pinene under boundary-layer atmospheric 347 conditions, and the κ_{sCI+H_2O} and κ_{sCI+NO_2} are the same as those in the B-case. The sulfate contribution of the sCI SO₂ becomes insignificant, around 0.3 µg m⁻³ or less than 3% of the 348 349 total simulated sulfate concentration on average during the episode in BTH (Figure 9). 350 Compared to the B-case, the sulfate contribution of the sCI SO₂ is decreased by more than 351 70% in the S1-case. The substantial reduction reveals that further studies are needed to 352 precisely determine the κ_{SCI+SO_2} . 353 One of the largest uncertainties concerning the lifetime of sCI is related to the κ_{sCI+H_2O} , but few studies have been conducted to directly measure the κ_{sCI+H_2O} . The reported 354 κ_{sCI+H_2O} varies widely, ranging from 2×10^{-19} to 1×10^{-15} cm³ s⁻¹ (Hatakeyama and Akimoto 355 356 1994), and several studies show that the κ_{sCI+H_2O} needs to be adjusted when the κ_{sCI+SO_2} is 357 adjusted (Li et al., 2013; Calvert et al., 1978; Suto et al., 1985). In order to evaluate the effect of water vapor on the sCI_SO₂, in the S2-case, the κ_{sCI+H_2O} is increased to 2.4×10⁻¹⁵ cm³ s⁻¹ 358 359 based on the reported ratio of κ_{sCI+H_2O} to κ_{sCI+SO_2} (6.1×10⁻⁵) (Calvert et al., 1978), and the

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

© Author(s) 2019. CC BY 4.0 License.

 κ_{sCI+SO_2} and κ_{sCI+NO_2} are the same as those in the B-case. The average sulfate contribution of the sCI_SO₂ in BTH is decreased to 0.2 µg m⁻³ or less than 2% of the total simulated sulfate concentration due to the competition of water vapor with SO₂ for sCI (Figure 9). Additionally, if a low κ_{sCI+SO_2} is used in the S2-case, the effect of water vapor on the sCI removal becomes more substantial.

4 Summaries and Conclusion

In the present study, a persistent air pollution episode with high O₃ and PM_{2.5} concentrations from 04 to 15 July 2015 in BTH is simulated using a source-oriented WRF-Chem model to study the contributions of four pathways to the sulfate formation. The four sulfate formation pathways include the heterogeneous reaction of SO₂ involving aerosol water (HR_SO₂), the SO₂ oxidation by OH (OH_SO₂), the primary emission, and the SO₂ oxidation by sCI (sCI_SO₂).

The WRF-Chem model reasonably reproduces the temporal variations of the meteorological parameters compared to observations at the weather station in Beijing. The model performs reasonably well in simulating the temporal profiles and spatial distributions of air pollutant mass concentrations against observations at monitoring sites in BTH. In addition, the simulated diurnal variations of submicron nitrate, ammonium, POA, SOA, and sulfate mass concentrations are generally in good agreements with the measurements at NCNST site in Beijing.

On average in BTH during the simulation episode, the HR_SO₂ plays the most important role in the sulfate formation, with a sulfate contribution of about 35%. Under conditions with the high O₃ concentration during summertime, the OH_SO₂ also constitutes a major sulfate source comparable to the HR_SO₂, accounting for about 33% of the total simulated sulfate concentration in BTH. Due to high SO₂ emissions, the primary emission

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

© Author(s) 2019. CC BY 4.0 License.

contributes about 23% of the sulfate concentration in BTH, mainly concentrated in cities and their downwind regions.

When an upper limit of the κ_{SCI+SO_2} (3.9×10⁻¹¹ cm³ s⁻¹) and a lower limit of κ_{SCI+H_2O} (1.97×10⁻¹⁸ cm³ s⁻¹) are used, the sCI_SO₂ plays an appreciable role in the sulfate formation, with a contribution of around 9%. However, there still exist large uncertainties in contributions of the sCI_SO₂ to the sulfate formation. Sensitivity studies reveal that the sulfate contribution of the sCI_SO₂ is substantially decreased to less than 3%, when the κ_{SCI+SO_2} is decreased to 6.0×10⁻¹³ cm³ s⁻¹ but the lower limit of κ_{SCI+H_2O} remains. Furthermore, when the κ_{SCI+H_2O} is increased to 2.38×10⁻¹⁵ cm³ s⁻¹ based on the reported ratio of κ_{SCI+H_2O} to κ_{SCI+SO_2} (6.1×10⁻⁵ cm³ s⁻¹) but the upper limit of the κ_{SCI+SO_2} remains, the sulfate contribution of the reaction becomes insignificant, less than 2%. Future studies still need to be conducted to measure the κ_{SCI+SO_2} and κ_{SCI+H_2O} under the atmospheric condition to better evaluate effects of the sCI chemistry on the sulfate formation.

Author contribution. Guohui Li, as the contact author, provided the ideas and financial support, verified the conclusions, and revised the paper. Lang Liu conducted a research, designed the experiments, carried the methodology out, performed the simulation, processed the data, prepared the data visualization, and prepared the manuscript with contributions from all authors. Naifang Bei, Jiarui Wu and Xia Li provided the treatment of meteorological data, analyzed the study data, validated the model performance, and reviewed the manuscript. Suixin Liu, Qingchuan Yang, Tian Feng, and Jiamao Zhou provided the observation data used in the study, synthesized the observation, and reviewed the paper. Xuexi Tie and Junji Cao provided critical reviews pre-publication stage.

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

© Author(s) 2019. CC BY 4.0 License.

410
411 Acknowledgements. This work is financially supported by the National Key R&D Plan
412 (Quantitative Relationship and Regulation Principle between Regional Oxidation Capacity of
413 Atmospheric and Air Quality (2017YFC0210000)) and National Research Program for Key
414 Issues in Air Pollution Control (DQGG0105).
415
416
417
418

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

420 References

- 421 Anglada, J. M., González, J., Torrent-Sucarrat, M.: Effects of the substituents on the
- 422 reactivity of carbonyl oxides. A theoretical study on the reaction of substituted carbonyl
- 423 oxides with water, Phys. Chem. Chem. Phys., 13(28), 13034-13045,
- 424 https://doi.org/10.1039/C1CP20872A, 2011.
- Bei, N., Li, G., Huang, R.-J., Cao, J., Meng, N., Feng, T., Liu, S., Zhang, T., Zhang, Q., and
- Molina, L. T.: Typical synoptic situations and their impacts on the wintertime air
- 427 pollution in the Guanzhong basin, China, Atmos. Chem. Phys., 16, 7373-7387, doi:
- 428 10.5194/acp-16-7373-2016, 2016.
- 429 Bei, N., Li, G., and Molina, L. T.: Uncertainties in SOA sim- ulations due to meteorological
- uncertainties in Mexico City during MILAGRO-2006 field campaign, Atmos. Chem.
- 431 Phys., 12, 11295–11308, https://doi.org/10.5194/acp-12-11295-2012, 2012.
- 432 Bei, N., Wu, J., Elser, M., Feng, T., Cao, J., El-Haddad, I., Li, X., Huang, R., Li, Z., Long, X.,
- 433 Xing, L., Zhao, S., Tie, X., Pr v t, A. S. H., and Li, G.: Impacts of meteorological
- 434 uncertainties on the haze formation in Beijing-Tianjin-Hebei (BTH) during wintertime:
- 435 a case study, Atmos. Chem. Phys., 17, 14579-14591, doi: 10.5194/acp-17-14579-2017,
- 436 2017.
- 437 Binkowski, F. S. and Roselle, S. J.: Models-3 Community Multiscale Air Quality (CMAQ)
- model aerosol component 1. Model description, J. Geophys. Res.-Atmos., 108, 335-346,
- 439 https://doi.org/10.1029/2001JD001409, 2003.
- 440 Boy, M., Mogensen, D., Smolander, S., Zhou, L., Nieminen, T., Paasonen, P., Plass-Dülmer,
- 441 C., Sipilā, M., Petäjä, T., Mauldin, L., Berresheim, H., and Kulmala, M.: Oxidation of
- 442 SO₂ by stabilized Criegee intermediate (sCI) radicals as a crucial source for atmospheric
- sulfuric acid concentrations, Atmos. Chem. Phys., 13, 3865-3879,
- https://doi.org/10.5194/acp-13-3865-2013, 2013.
- 445 Calvert, J. G., Su, F., Bottenheim, J. W., and Strausz, O. P.: Mechanism of the homo-
- geneous oxidation of sulfur dioxide in the troposphere, Atmos. Environ., 12, 197-226,
- 447 1978.
- 448 Chen, F. and Dudhia, J.: Coupling an advanced land surface-hydrology model with the Penn
- 449 State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity, Mon.
- 450 Weather Rev., 129, 569-585.
- 451 https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001.
- 452 Cheng, Y., Zheng, G., Wei, C., Mu, H., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K.,
- 453 Carmichael, G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as
- a source of sulfate during haze events in China, Sci. Adv., 2(12), e1601530, DOI:
- 455 10.1126/sciadv.1601530, 2016.
- 456 Chou, M. D. and Suarez, M. J.: A solar radiation parameterization for atmospheric studies,
- 457 NASA TM-104606, Nasa Tech. memo 15, 1999.
- 458 Chou, M. D., Suarez, M. J., Liang, X. Z., Yan, M. H., and Cote, C.: A Thermal Infrared
- 459 Radiation Parameterization for Atmospheric Studies, NASA TM-2001-104606, Max J.,
- 460 19, 2001.

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

© Author(s) 2019. CC BY 4.0 License.

- Cox, R. A., and Penkett, S. A.: Oxidation of atmospheric SO₂ by products of the Ozone-Olefin reaction, Nature, 230, 321-322, 1971.
- Dunker, A. M., Morris, R. E., Pollack, A. K., Schleyer, C. H., and Yarwood, G:
 Photochemical modeling of the impact of fuels and vehicles on urban ozone using auto
 oil program data, Environ. Sci. Technol., 30, 787–801,

466 https://doi.org/10.1021/es950175m, 1996.

Feng, T., Li, G., Cao, J., Bei, N., Shen, Z., Zhou, W., Liu, S., Zhang, T., Wang, Y., Huang,
 R.-J., Tie, X., and Molina, L. T.: Simulations of organic aerosol concentrations during
 springtime in the Guanzhong Basin, China, Atmos. Chem. Phys., 16, 10045-10061,

470 https://doi.org/10.5194/acp-16-10045-2016, 2016.

- Gao, M., Carmichael, G. R., Wang, Y., Saide, P. E., Yu, M., Xin, J., Liu, Z., and Wang, Z.:
 Modeling study of the 2010 regional haze event in the North China Plain, Atmos. Chem.
 Phys., 16, 1673-1691, https://doi.org/10.5194/acp-16-1673-2016, 2016.
- Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., and Eder, B.: Fully coupled "online" chemistry within the WRF model, Atmos. Environ., 39, 6957–6975, 2005.
- Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of
 global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and
 Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210,

480 https://doi.org/10.5194/acp-6-3181-2006, 2006.

- 481 Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., and
 482 Zeng, L.: Elucidating severe urban haze formation in China, P. Natl. Acad. Sci. USA,
 483 111, 17373-17378, https://doi.org/10.1073/pnas.1419604111, 2014.
- Hatakeyama, S. and Akimoto, H.: Reactions of Criegee Intermediates in the gas phase, Res. Chem. Intermed., 20, 503–524, 1994.
- He, P., Alexander, B., Geng, L., Chi, X., Fan, S., Zhan, H., Kang, H., Zheng, G., Cheng, Y.,
 Su, H., Liu, C., and Xie, Z.: Isotopic constraints on heterogeneous sulfate production in
 Beijing haze, Atmos. Chem. Phys., 18, 5515-5528,
 https://doi.org/10.5104/spr. 18.5515.2018.
- 489 https://doi.org/10.5194/acp-18-5515-2018, 2018.
- Hong, S. Y. and Lim, J. O. J.: The WRF Single-Moment 6-Class Microphysics Scheme
 (WSM6), Asia-Pacif. J. Atmos. Sci., 42, 129-151, 2006.
- Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J., Granier, C., Tie,
 X., Lamarque, J. F., Schultz, M. G., Tyndall, G. S., Orlando, J. J., and Brasseur, G. P.: A
 global simulation of tropospheric ozone and related tracers: Description and evaluation

of MOZART, version 2, J. Geophys. Res.-Atmos., 108, 4784,

- 496 https://doi.org/10.1029/2002JD002853, 2003.
- Janjić, Z. I.: Nonsingular Implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso Model, NCEP Office Note 437, 2002.
- Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: The tropo- spheric degradation of volatile
 organic compounds: a proto- col for mechanism development, Atmos. Environ., 31,
 81-104, doi:10.1016/S1352-2310(96)00105-7, 1997.

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

- 502 Li, G., Bei, N., Cao, J., Huang, R., Wu, J., Feng, T., Wang, Y., Liu, S., Zhang, Q., Tie, X.,
- and Molina, L. T.: A possible pathway for rapid growth of sulfate during haze days in
- 504 China, Atmos. Chem. Phys., 17, 3301-3316, https://doi.org/10.5194/acp-17-3301-2017,
- 505 2017.
- Li, G., Bei, N., Tie, X., and Molina, L. T.: Aerosol effects on the photochemistry in Mexico
- 507 City during MCMA-2006/MILAGRO campaign, Atmos. Chem. Phys., 11, 5169-5182,
- 508 https://doi.org/10.5194/acp-11-5169-2011, 2011a.
- 509 Li, G., Lei, W., Bei, N., and Molina, L. T.: Contribution of garbage burning to chloride and
- 510 PM_{2.5} in Mexico City, Atmos. Chem. Phys. 12, 8751-8761,
- 511 https://doi.org/10.5194/acp-12-8751-2012, 2012.
- 512 Li, G., Lei, W., Zavala, M., Volkamer, R., Dusanter, S., Stevens, P., and Molina, L. T.:
- Impacts of HONO sources on the photochemistry in Mexico City during the
- 514 MCMA-2006/MILAGO Campaign, Atmos. Chem. Phys., 10, 6551-6567,
- 515 https://doi.org/10.5194/acp-10-6551-2010, 2010.
- 516 Li, G., Zavala, M., Lei, W., Tsimpidi, A. P., Karydis, V. A., Pandis, S. N., Canagaratna, M.
- R., and Molina, L. T.: Simulations of organic aerosol concentrations in Mexico City
- using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign, Atmos.
- 519 Chem. Phys., 11, 3789-3809, https://doi.org/10.5194/acp-11-3789-2011, 2011b.
- 520 Li, G., Zhang, R., Fan, J., and Tie, X.: Impacts of black carbon aerosol on photolysis and
- 521 ozone, J. Geophys. Res.-Atmos., 110, D23206, https://doi.org/10.1029/2005JD005898,
- 522 **2005**.
- 523 Li, J., Ying, O., Yi, B., and Yang, P.: Role of stabilized Criegee Intermediates in the
- formation of atmospheric sulfate in eastern United States, Atmos. Environ., 79, 442-447,
- 525 http://dx.doi.org/10.1016/j.atmosenv.2013.06.048, 2013.
- Li, X., Wu, J., Elser, M., Feng, T., Cao, J., El-Haddad, I., Huang, R., Tie, X., Prévôt, A. S. H.,
- and Li, G.: Contributions of residential coal combustion to the air quality in Beijing—
- 528 Tianjin-Hebei (BTH), China: a case study, Atmos. Chem. Phys., 18, 10675-10691,
- 529 https://doi.org/10.5194/acp-18-10675-2018, 2018.
- Mauldin, R. L., Berndt, T., Sipilä, M., Paasonen, P., Petäjä, T., Kim, S., Kurtén, T.,
- 531 Stratmann, F., Kerminen, V. M., and Kulmala, M.: A new atmospherically relevant
- 532 oxidant of sulphur dioxide, Nature, 488, 193-196, doi:10.1038/nature11278, 2012.
- Nenes, A., Pandis, S. N., and Pilinis, C.: ISORROPIA: A new thermodynamic equilibrium
- model for multiphase multicomponent inorganic aerosols, Aquat. Geochem., 4, 123–152,
- 535 https://doi.org/10.1023/a:1009604003981, 1998.
- 536 Percival, C. J., Welz, O., Eskola, A. J., Savee, J. D., Osborn, D. L., Topping, D. O., Lowe, D.,
- 537 Utembe, S. R., Cooke, M. C., Taatjes, C. A., and Shallcross, D. E.: Regional and global
- impacts of Criegee intermediates on atmospheric sulphuric acid concentrations and first
- steps of aerosol formation, Faraday discussions, 165, 45-73, 2013.
- 540 Pierce, J. R., Evans, M. J., Scott, C. E., D'Andrea, S. D., Farmer, D. K., Swietlicki, E., and
- 541 Spracklen, D. V.: Weak global sensitivity of cloud condensation nuclei and the aerosol
- indirect effect to Criegee + SO₂ chemistry, Atmos. Chem. Phys., 13, 3163-3176,
- 543 https://doi.org/10.5194/acp-13-3163-2013, 2013.

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

- Sarwar, G., Fahey, K., Kwok, R., Gilliam, R. C., Roselle, S. J., Mathur, R., Xue, J., Yu, J.,
- and Carter, W. P.: Potential impacts of two SO₂ oxidation pathways on regional sulfate
- 546 concentrations: Aqueous-phase oxidation by NO₂ and gas-phase oxidation by Stabilized
- Criegee Intermediates, Atmos. Environ., 68, 186-197,
- 548 https://doi.org/10.1016/j.atmosenv.2012.11.036, 2013.
- 549 Sarwar, G., Simon, H., Fahey, K., Mathur, R., Goliff, W. S., and Stockwell, W. R.: Impact of
- sulfur dioxide oxidation by Stabilized Criegee Intermediate on sulfate, Atmos. Environ.,
- 551 85, 204-214, https://doi.org/10.1016/j.atmosenv.2013.12.013, 2014.
- 552 Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd Edn., John Wiley & Sons Inc., New York, 2006.
- 554 Spracklen, D. V., Jimenez, J. L., Carslaw, K. S., Worsnop, D. R., Evans, M. J., Mann, G. W.,
- Zhang, Q., Canagaratna, M. R., Allan, J., Coe, H., McFiggans, G., Rap, A., and Forster,
- 556 P.: Aerosol mass spectrometer constraint on the global secondary organic aerosol budget,
- 557 Atmos. Chem. Phys., 11, 12109-12136, https://doi.org/10.5194/acp-11-12109-2011,
- 558 2011.
- 559 Sun, Y. L., Wang, Z. F., Du, W., Zhang, Q., Wang, Q. Q., Fu, P. Q., Pan, X. L., Li, J., Jayne,
- J., and Worsnop, D. R.: Long-term real-time measurements of aerosol particle
- 561 composition in Beijing, China: seasonal variations, meteorological effects, and source
- analysis, Atmos. Chem. Phys., 15, 10149-10165,
- 563 https://doi.org/10.5194/acp-15-10149-2015, 2015.
- 564 Suto, M., Manzanares, E. R., and Lee, L. C.: Detection of sulfuric-acid aerosols by ultraviolet scattering. Environ. Sci. Tech., 19, 815-820, 1985.
- Taatjes, C. A.: Criegee intermediates: What direct production and detection can teach us
- about reactions of carbonyl oxides, Annu. Rev. Phys. Chem. 2017. 68:183–207, 2017.
- Tao, J., Zhang, L., Cao, J., and Zhang, R.: A review of current knowledge concerning PM_{2.5}
- chemical composition, aerosol optical properties and their relationships across China,
- 570 Atmos. Chem. Phys., 17, 9485-9518, https://doi.org/10.5194/acp-17-9485-2017, 2017.
- 571 Tie, X., Madronich, S., Walters, S., Zhang, R., Rasch, P., and Collins, W.: Effect of clouds on
- 572 photolysis and oxidants in the troposphere, J. Geophys. Res.-Atmos., 108, 4642,
- 573 https://doi.org/10.1029/2003JD003659, 2003.
- Vereecken, L., Harder, H., and Novelli, A.: The reaction of Criegee intermediates with NO.
- 80₂, and SO₂, and their fate in the atmosphere, Phys. Chem. Chem. Phys., 14, 14682–
- 576 14695, doi:10.1039/c2cp42300f, 2012.
- Wang, S., and Hao, J.: Air quality management in China: Issues, challenges, and options, J. Environ. Sci., 24, 2-13, 2012.
- Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy Zamora, M., Hu, M., Lin, Y., Peng, J.,
- Guo, S., Meng, J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., Cao, J., An, Z.,
- Zhou, W., Li, G., Wang, J., Tian, P., Marrero-Ortiz, W., Secrest, J., Du, Z., Zheng, J.,
- 582 Shang, D., Zeng, L., Shao, M., Wang, W., Huang, Y., Wang, Y., Zhu, Y., Li, Y., Hu, J.,
- Pan, B., Cai, L., Cheng, Y., Ji, Y., Zhang, F., Rosenfeld, D., Liss, P. S., Duce, R. A.,
- Kolb, C. E., and Molina, M. J.: Persistent sulfate formation from London Fog to Chinese
- 585 haze, P. Natl. Acad. Sci. USA, 113(48), 13630-13635,
- 586 https://doi.org/10.1073/pnas.1616540113, 2016.

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

- Welz, O., Savee, J. D., Osborn, D. L., Vasu, S. S., Percival, C. J., Shallcross, D. E., and
 Taatjes, C.A: Direct kinetic measurements of Criegee Intermediate (CH₂OO) formed by
- 589 reaction of CH₂I with O₂, Science, 335, 204-207, doi:10.1126/science.1213229, 2012.
- 590 Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in
- 591 regional-scale numerical models, Atmos. Environ., 23, 1293-1304, https://doi.org/10.1016/0004-6981(89)90153-4, 1989.
- 593 Wu, J., Li, G., Cao, J., Bei, N., Wang, Y., Feng, T., Huang, R., Liu, S., Zhang, Q., and Tie, X.:
- 594 Contributions of trans-boundary transport to summertime air quality in Beijing, China,
- 595 Atmos. Chem. Phys., 17, 2035-2051, https://doi.org/10.5194/acp-17-2035-2017, 2017.
- Wu, J., Bei, N., Li, X., Cao, J., Feng, T., Wang, Y., Tie, X., and Li, G.: Widespread air
- 597 pollutants of the North China Plain during the Asian summer monsoon season: a case
- 598 study, Atmos. Chem. Phys., 18, 8491-8504, https://doi.org/10.5194/acp-18-8491-2018,
- 599 2018.
- 600 Xing, L., Wu, J., Elser, M., Tong, S., Liu, S., Li, X., Liu, L., Cao, J., Zhou, J., El-Haddad, I.,
- Huang, R., Ge, M., Tie, X., Prévôt, A. S. H., and Li, G.: Wintertime secondary organic
- aerosol formation in Beijing-Tianjin-Hebei (BTH): contributions of HONO sources and
- heterogeneous reactions, Atmos. Chem. Phys., 19, 2343-2359,
- 604 https://doi.org/10.5194/acp-19-2343-2019, 2019.
- Ying Q., Cureno, I. V., Chen, G., Ali, S., Zhang, H., Malloy, M., Bravo, H. A., and Sosa, R.:
- 606 Impacts of stabilized Criegee Intermediates, surface uptake processes and higher
- aromatic secondary organic aerosol yields on predicted PM_{2.5} concentrations in the
- Mexico City Metropolitan Zone, Atmos. Environ., 94, 438-447,
- 609 http://dx.doi.org/10.1016/j.atmosenv.2014.05.056, 2014.
- 610 Ying, Q. and Kleeman, M. J.: Source contributions to the regional distribution of secondary
- 611 particulate matter in California, Atmos. Environ., 40: 736-752,
- 612 https://doi.org/10.1016/j.atmosenv.2005.10.007, 2006.
- 613 Ying, O. and Krishnan, A.: Source contribution of volatile organic compounds to ozone
- formation in southeast Texas, J. Geophys. Res.-Atmos., 115, D17306,
- 615 https://doi.org/10.1029/2010JD013931, 2010.
- 2616 Zhang, H. and Ying, Q.: Secondary organic aerosol formation and source apportionment in
- 617 Southeast Texas, Atmos. Environ., 45: 3217-3227,
- https://doi.org/10.1016/j.atmosenv.2011.03.046, 2011.
- Zhang, Q., Streets, D. G., Carmichael, G. R., He, K., Huo, H., Kannari, A., Klimont, Z., Park,
- 620 I. S., Reddy, S., Fu, J., Chen, D., Duan, L., Lei, Y., Wang, L., and Yao, Z.: Asian
- 621 emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131-5153,
- 622 https://doi.org/10.5194/acp-9-5131-2009, 2009.
- 623 Zhang, X. Y., Wang, Y. Q., Niu, T., Zhang, X. C., Gong, S. L., Zhang, Y. M., and Sun, J. Y.:
- 624 Atmospheric aerosol compositions in China: spatial/temporal variability, chemical
- signature, regional haze distribution and comparisons with global aerosols, Atmos.
- 626 Chem. Phys., 12, 779-799, https://doi.org/10.5194/acp-12-779-2012, 2012.
- Zhao, P. S., Dong, F., He, D., Zhao, X. J., Zhang, X. L., Zhang, W. Z., Yao, Q., and Liu, H.
 Y.: Characteristics of concentrations and chemical compositions for PM_{2.5} in the region
- 629 of Beijing, Tianjin, and Hebei, China, Atmos. Chem. Phys., 13, 4631-4644,
- https://doi.org/10.5194/acp-13-4631-2013, 2013.

Discussion started: 13 May 2019 © Author(s) 2019. CC BY 4.0 License.

Table 1 WRF-CHEM model configurations.

c	9	0
o	J	Δ

Regions	Beijing-Tianjin-Hebei (BTH)	
Simulation period	July 4 to 15, 2015	
Domain size	300×300	
Domain center	38.0°N, 116.0°E	
Horizontal resolution	6 km \times 6 km	
	35 vertical levels with a stretched vertical grid with	
Vertical resolution	spacing ranging from 30m near the surface, to 500m at 2.5km and 1km above 14km	
Microphysics scheme	WSM 6-class graupel scheme (Hong and Lim, 2006)	
Boundary layer scheme	MYJ TKE scheme (Janjić, 2002)	
Surface layer scheme	MYJ surface scheme (Janjić, 2002)	
Land-surface scheme	Unified Noah land-surface model (Chen and Dudhia, 2001)	
Long-wave radiation scheme	Goddard longwave scheme (Chou and Suarez, 2001)	
Short-wave radiation scheme	Goddard shortwave scheme (Chou and Suarez, 1999)	
Meteorological boundary	ERA-Interim 0.125°×0.125° reanalysis data	
and initial conditions	(http://apps.ecmwf.int/datasets)	
Chemical initial and	MOZART 6-hour output (Horowitz et al., 2003)	
boundary conditions	(https://www.acom.ucar.edu/wrf-chem/mozart.shtml)	
Anthropogenic emission	SAPRC-99 chemical mechanism emissions (Zhang et	
inventory	al., 2009)	
Biogenic emission	MEGAN model developed by Guenther et al. (2006)	
inventory		
Four-dimension data	NCEP ADP Global Air Observational Weather Data	
assimilation	(https://rda.ucar.edu/datasets)	
Model spin-up time	24 hours	

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

© Author(s) 2019. CC BY 4.0 License.

Table 2 Reactions and rate constants related to the sCI chemistry

638 639

Reaction		Rate constant (cm ³ s ⁻¹)	References
$ETHE + O_3$	$\rightarrow \dots + 0.37 \times sCI_1$	9.14×10 ⁻¹⁵	Sarwar et al. (2013)
$OLE1 + O_3$	$\rightarrow \dots + 0.319 \times_{S} CI_1$	2.62×10 ⁻¹⁵	Sarwar et al. (2013)
$OLE2 + O_3$	$\rightarrow \dots + 0.319 \times_{S} CI_2$	5.02×10^{-16}	Sarwar et al. (2013)
$ISOP + O_3$	$\rightarrow \dots + 0.22 \times \text{sCI}_3$	7.88×10^{-15}	Sarwar et al. (2013)
$TERP + O_3$	$\rightarrow \dots + 0.21 \times sCI_3$	1.08×10^{-15}	Sarwar et al. (2013)
$sCI_{1,2,3} + SO_2$	\rightarrow SULF	3.9×10^{-11}	Welz et al. (2012)
$sCI_{1,2,3} + NO_2$	\rightarrow NO ₃	7.0×10^{-12}	Welz et al. (2012)
$sCI_{1,2,3} + H_2O$	\rightarrow	1.97×10 ⁻¹⁸	Ying et al. (2014)

Note: SULF represents sulfuric acid.

640 641 642

643 644

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 May 2019

Figure Captions
Figure 1 WRF-Chem simulation domain with topography height. The red filled circles show the locations of the cities with ambient air quality monitoring sites, and the size of the circles represents the number of sites in each city. The white and black filled rectangle denotes the weather station and NCNST observation site in Beijing.
Figure 2 Temporal variations of the simulated (blue line) and observed (black dots) near-surface (a) temperature, (b) relative humidity, (c) wind speed, and (d) wind direction at the weather station in Beijing from 04 to 15 July 2015.
Figure 3 Comparison of observed (black dots) and simulated (blue line) diurnal profiles of near surface hourly (a) PM _{2.5} , (b) O ₃ , (c) NO ₂ , and (d) SO ₂ averaged over all ambient monitoring stations in BTH from 04 to 15 July 2015.
Figure 4 Spatial distributions of average (a) $PM_{2.5}$, (b) peak O_3 , (c) NO_2 , and (d) SO_2 mass concentrations from 04 to 15 July 2015. Colored dots, colored contour, and black arrows are observations and simulations of air pollutants, and simulated surface winds, respectively.
Figure 5 Comparison of observed (black dots) and simulated (blue line) diurnal profiles of hourly submicron (a) nitrate, (b) ammonium, (c) SOA, and (d) POA mass concentrations at NCNST site in Beijing from 04 to 15 July 2015.
Figure 6 (a) Comparison of observed (black dots) and simulated (blue line) diurnal profiles of hourly submicron sulfate mass concentration, and temporal variation of simulated sulfate contribution of the (b) HR_SO ₂ , (c) OH_SO ₂ , (d) primary emission, and (e) sCI_SO ₂ to the sulfate concentration at NCNST site in Beijing from 04 to 15 July 2015.
Figure 7 Temporal variation of the average simulated pH in Beijing from 04 to 15 July 2015
Figure 8 Spatial distributions of average sulfate contributions of the (a) HR_SO ₂ , (b) OH_SO ₂ , (c) primary emission, and (d) sCI_SO ₂ in BTH from 04 to 15 July 2015.
Figure 9 Temporal variations of the simulated average sulfate concentration contributed by the sCI_SO ₂ (Blue line: B-case; Red line: S1-case; Green line: S2-case) in BTH from 04 to 15 July 2015.

Discussion started: 13 May 2019 © Author(s) 2019. CC BY 4.0 License.

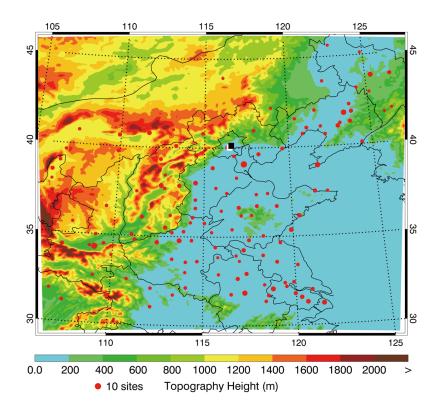


Figure 1 WRF-Chem simulation domain with topography height. The red filled circles show the locations of the cities with ambient air quality monitoring sites, and the size of the circles represents the number of sites in each city. The white and black filled rectangle denotes the weather station and NCNST observation site in Beijing.

Discussion started: 13 May 2019

 $693 \\ 694$

© Author(s) 2019. CC BY 4.0 License.

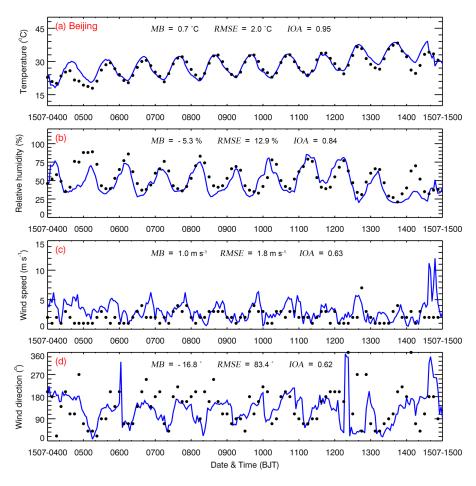


Figure 2 Temporal variations of the simulated (blue line) and observed (black dots) near-surface (a) temperature, (b) relative humidity, (c) wind speed, and (d) wind direction at the weather station in Beijing from 04 to 15 July 2015.

Discussion started: 13 May 2019

 $\begin{array}{c} 702 \\ 703 \end{array}$

© Author(s) 2019. CC BY 4.0 License.

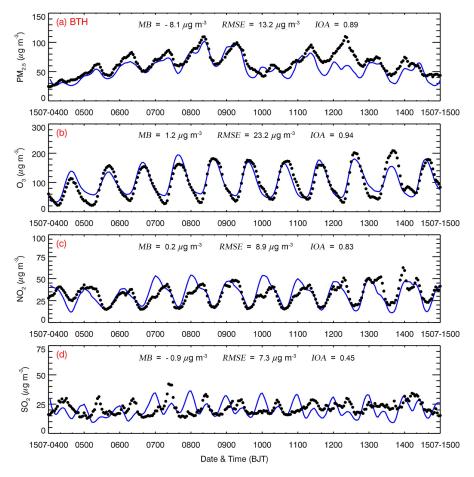


Figure 3 Comparison of observed (black dots) and simulated (blue line) diurnal profiles of near surface hourly (a) $PM_{2.5}$, (b) O_3 , (c) NO_2 , and (d) SO_2 averaged over all ambient monitoring stations in BTH from 04 to 15 July 2015.

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-313 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 13 May 2019

© Author(s) 2019. CC BY 4.0 License.

712 713 714

 $715 \\ 716$

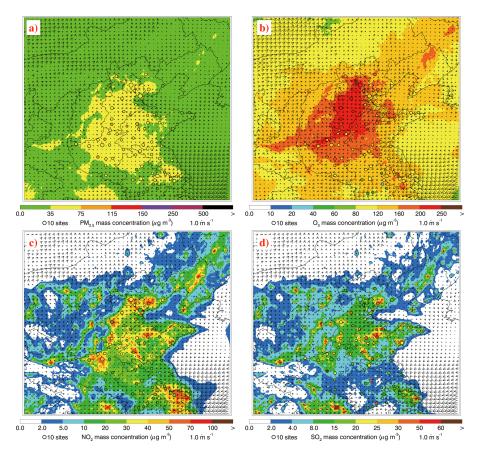


Figure 4 Spatial distributions of average (a) PM_{2.5}, (b) peak O₃, (c) NO₂, and (d) SO₂ mass concentrations from 04 to 15 July 2015. Colored dots, colored contour, and black arrows are observations and simulations of air pollutants, and simulated surface winds, respectively.

Discussion started: 13 May 2019

© Author(s) 2019. CC BY 4.0 License.

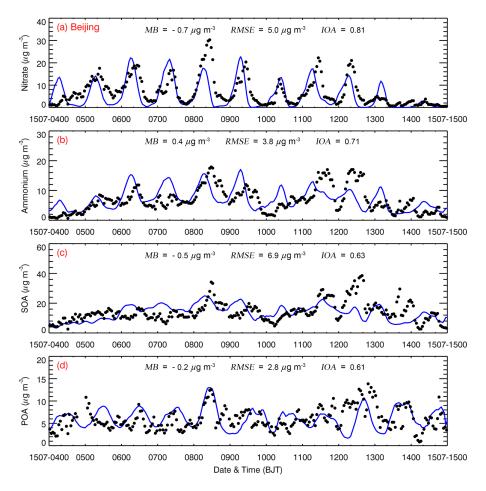


Figure 5 Comparison of observed (black dots) and simulated (blue line) diurnal profiles of hourly submicron (a) nitrate, (b) ammonium, (c) SOA, and (d) POA mass concentrations at NCNST site in Beijing from 04 to 15 July 2015.

Discussion started: 13 May 2019

© Author(s) 2019. CC BY 4.0 License.

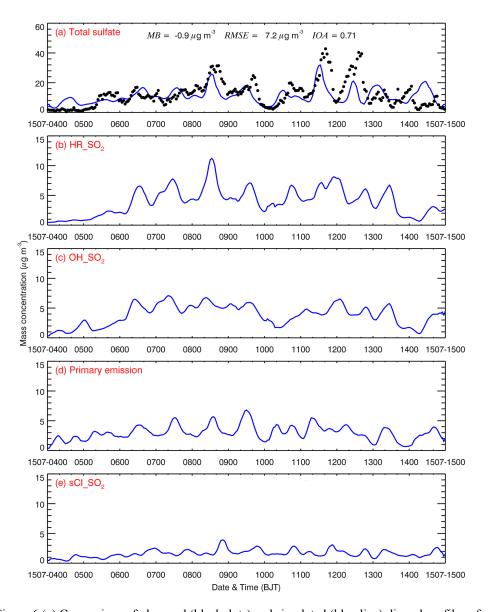
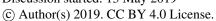



Figure 6 (a) Comparison of observed (black dots) and simulated (blue line) diurnal profiles of hourly submicron sulfate mass concentration, and temporal variation of simulated sulfate contribution of the (b) HR_SO₂, (c) OH_SO₂, (d) primary emission, and (e) sCI_SO₂ to the sulfate concentration at NCNST site in Beijing from 04 to 15 July 2015.

 $741\\742$

Discussion started: 13 May 2019

 $744 \\ 745$

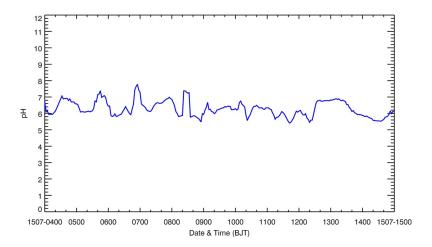


Figure 7 Temporal variation of the average simulated pH in Beijing from 04 to 15 July 2015.

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-313 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 13 May 2019

© Author(s) 2019. CC BY 4.0 License.

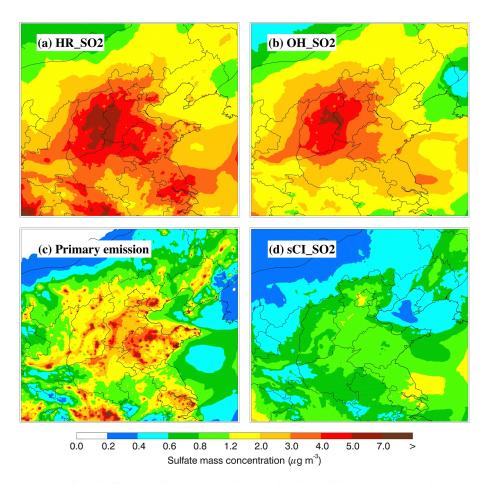


Figure 8 Spatial distributions of average sulfate contributions of the (a) HR_SO₂, (b) OH_SO₂, (c) primary emission, and (d) sCI_SO₂ in BTH from 04 to 15 July 2015.

Discussion started: 13 May 2019

© Author(s) 2019. CC BY 4.0 License.

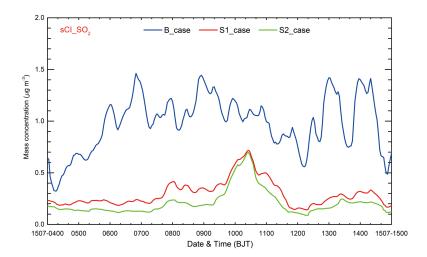


Figure 9 Temporal variations of the simulated average sulfate concentration contributed by the sCI_SO₂ (Blue line: B-case; Red line: S1-case; Green line: S2-case) in BTH from 04 to 15 July 2015.